Total No. of Pages: 3

Seat No.

M.B.A. (Part - I) (Semester - I) (Regular) Examination, December - 2014 MATHEMATICS AND STATISTICS FOR MANAGEMENT

(Paper - III) (New)

Sub. Code: 48322

Day and Date: Monday, 22 - 12-2014

Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions:

- 1) Question numbers 1 and 5 are compulsory.
- 2) Attempt any two questions from question number 2 to 4.
- 3) Figures to the right indicate full marks.
- 4) Use of non programmable calculator is allowed.

Q1) A) Evaluate:

i) a)
$$\lim_{x \to 2} \left[\frac{x-2}{\sqrt{x} - \sqrt{2}} \right]$$

b)
$$\lim_{x \to a} \left[\frac{x^3 - a^3}{x - a} \right]$$

- ii) The cost function is given by $C = 2 + 3x + x^2$. Find average cost and marginal cost at x = 3.
- B) Following data gives number of wickets taken by A and B in one day test matches.

Wickets taken by	Α	4	1	5	2	5	2	6
Wickets taken by	В	4	5	6	5	3	4	4

Find who is consistent in taking the wickets.

[10 + 10 = 20]

Q2) A) Differentiate the following w. r. t. x

i) a)
$$y = \frac{3x^2 - 2}{4x^2 + 1}$$

b)
$$x^2 + y^2 = 3xy$$

ii) A function f(x) is defined as

$$f(x) = 1 + x$$
, $-1 \le x < 0$
= $1 - x$, $0 \le x < 1$
= $x - 1$, $1 \le x \le 2$

Find
$$f\left(\frac{-2}{3}\right)$$
, $f\left(\frac{3}{4}\right)$, $f\left(\frac{8}{7}\right)$, $f(2)$

B) Define Karl pearson's corelation coefficient. Find correlation coefficient from the following data and comment on your result:

Supply: 8 4 5

Demand: 12 7 8 4 10 9

[8+7=15]

Q3) A) Define scalar matrix. If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ then show that $A^2 - 4A$ is a

scalar matrix.

B) Define M.D. about mean . Calculate M.D. about mean from the following data :

Value (x):	7	8	9	10	11	12	13
Frequency (f):	- 4	6	9	12	9	6	4

[8 + 7 = 15]

Q4) A) State the formula for Fisher's price index number. Compute Fisher's price index number from the following data and comment on it:

Commodity	Base	e year	Current year			
	Price in Rs.	Quantity in Kg.	Price in Rs.	Quantity in Kg.		
Λ	12	10	15	15		
В	20	8	30	12		
C	50	2	70	3		
D 100		1	110	2		

B) Solve the equations by Cramers rules:

$$x + y = 1, y + z = 7, z + x = 2$$

$$[8 + 7 = 15]$$

Q5) Attempt any FOUR:

[20]

a) Define Time series. Calculate three yearly moving averages from the data.

year	1 -	2	3	4	5	6	7	8	9	10
Sales in lakhs	4	7	10	12	10	15	20	22	23	22

b) At what rate percent will Rs. 380 amount to Rs. 893 in 15 years?

c) If
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}$ then verify that $|AB| = |A| \cdot |B|$

- d) Explain how to construct mean chart related to S.Q.C.
- e) You are given $\overline{x} = 40$, $\overline{y} = 50$ $\sigma_x = 2.5$, $\sigma_y = 3.5$ and r = 0.8. Obtain the equation of line of regression of x on y and find best estimate of x when y = 45.

f) If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 then show that $A^2 - 5A + 2I = 0$, where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.